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Determination of Thermodynamic Properties from the 
Speed of Sound 

A. F. Estrada-Alexanders, 2"3 J. P. M. Trusler, -''4 and M. P. Zarari 2 

We describe methods by which all of the observable thermodynamic properties 
of a compressed gas. including the compressibility factor and the isochoric heat 
capacity, ,nay be determined from sound speed data by numerical integration of 
a pair of partial differenti~,l equations. The technique ,nay be employed over a 
wide range of conditions. Initial values are required, but we demonstrate that 
values specified on an isotherm close to the critical temperature are sufficient for 
application of the method to the entire homogeneous fluid region at subcritical 
densities. The method may also be extended to higher densities at temperatures 
above the critical. The effects of errors in both the initial values and the speed 
of sound are examined in detail by means of ~,nalytic and numerical results. The 
rest, Its indicate that all of the observable thermodynamic properties may be 
obtained with an uncertainty equal to or less than that achievable by the best 
available alternative techniques. 
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I, INTRODUCTION 

The accurate experimental determination of thermodynamic properties of 
fluids, coupled with the representation of these data by equations of state, 
remains an important task. For a number of pure fluids, wide-ranging 
equations of state have been developed which represent accurately all of 
the thermodynamic properties of the fluid [ 1,4] .  Certain information is 
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considered to be essential in the formulation of these equations of state. In 
particular, the vapor pressure curve, densities of the saturated liquid and 
vapor, and wide-ranging (p,p, , ,  T) measurements in the single-phase 
regions are required. Knowledge of the perfect-gas properties is of course 
also essential. In principle, this information is sufficient to establish an 
equation of state, but in practice it is found that second derivatives of the 
Helmholtz free energy are not well defined and that some heat capacity 
and/or sound speed results are also desirable to constrain these derivatives 
[1].  The use of acoustic results in the formulation of equations of state is 
particularly attractive since, with modern instrumentation, the speed of 
sound may be measured over a wide range of conditions with outstanding 
accuracy. 

It is also possible to obtain all of the observable thermodynamic 
properties of a fluid phase directly from the speed of sound in advance of 
adopting any particular empirical representation of the thermodynamic 
surface. This may be achieved by integration, subject to specified initial 
conditions, of the partial differential equations which link the speed of 
sound with the other thermodynamic properties. In this paper we describe 
a practical algorithm for this purpose which is appropriate to the gas 
phase. We investigate in detail the propagation of errors arising from 
uncertainties in both the initial conditions and the speed of sound. 

2. THEORY 

The speed of sound u in a homogeneous fluid at zero fi'equency is 
given by 

u'- = (Op/Op)s ( 1 ) 

where p is the pressure, p is the mass density, and S denotes entropy. It is 
convenient to eliminate the isentropic partial derivatives in favor of iso- 
thermal and either isobaric or isochoric terms. Taking temperature T and 
pressure p as the independent variables and introducing the compressibility 
factor Z =  Mp/pRT ,  we have 

u - 2 = ( M / R T Z 2 ) [ { Z - p ( O Z / c 3 p ) T } - ( R / C z , . m ) { Z +  T(c3Z/OT)z,} z ] (2) 

where R is the gas constant and M is the molar mass. In the perfect-gas limit, 
we have ( R T / M u 2 ) =  1-(R/CzPg,,,), from which the perfect-gas isobaric 
molar heat capacity C p~ may be obtained. The isobaric molar heat p. m 
capacity of the compressed gas may be written 

S p i n  ~ Pg I~ ~ • c ,  .... + ( o c , . m / o p ) T , / p  131 
] 
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where 

(OC,,.mlOP)r= -(R/p){2T(OZ/c3T)t, + T-(O-Z/OT-),,~ 14) 

Equations (2) and (4) may then be solved simultaneously to obtain Z ( T , p )  
and Cp.m(T,p) over the region in which u(T,p)is known. 

If, instead of (T,p) ,  we take (T,p,,) as the independent variables, 
where p,, is the amount-of-substance density, the following equations are 
obtained: 

u2=(RT/M) [  { Z + p,,(OZ/Op,,)T} +(R/C,..mI{Z + T(c~Z/cqT)p,,} 2] (5) 

and 

(OC,..,,,/c~p,,)T= -(R/p,,){2T(c~Z/c~T),,,+ T2(O2Z/?)T'-),,,,} (6) 

Equations (5) and (6) may also be solved simultaneously to obtain Z and 
Cv.m over the region in which u is known even when (u, T,p) are the 
measured quantities. 

Clearly, initial values or boundary values are required for the integra- 
tion of either pair of equations, and since we have a second-order partial 
differential equation, two independent sets of values will be required. Based 
on the form of Eq.(1), we argue that the initial conditions must be 
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specified along, or at least near to. a path which crosses all of the isen- 
tropes that pass through the region in which the solution is sought. The 
general form of the isentropes is illustrated in Fig. I. where results for fluid 
methane are shown on a temperature-density diagram. If the integration 
region is a rectangular space in (T,p,) or (T,p), then the only path 
that satisfies our criterion is the isotherm at the lowest temperature. The 
integration then proceeds toward higher temperatures. However, by our 
criterion, it should also be possible to generate a stable solution at tem- 
peratures below that of the initial isotherm provided that the domain of the 
integration is progressively restricted to pressures or densities which fall 
with decreasing temperature at least as rapidly as do the isentropes. These 
argument will be substantiated below using both analytic and numerical 
results concerning the sensitivity of the solution to the errors in the initial 
conditions. 

3. N U M E R I C A L  M E T H O D S  

We now turn to numerical algorithms for obtaining all of the thermo- 
dynamic properties of a gas fi'om the speed of sound. A practical method for 
the case in which ( 7", p) are the independent variables has been described in 
detail by Trusler and Zarari [2] .  Here we consider an alternative method 
appropriate to a rectangular space with ( T. p, ) as the independent variables. 
We shall also indicate how either method may be adapted to cope with a 
subcritical region bounded by a line parallel to the saturation curve. 

3.1. (T, p,,) as Independent Variables 

In this case we are interested m solving Eqs. (5) and (6) and we have 
devised a strategy for this which is similar to the predictor-corrector algo- 
rithm of Trusler and Zarari [2] .  Values of Z and (OZ/OT)I,,, are required 
at the initial temperature T,, and these are used together with the speed 
of sound to determined Cv.m along the that isotherm from Eq. (5). 
Differentiation of C~'.m with respect to p ,  then permits determination of 
(O'-Z/3T'-)~,,, from Eq. (6) for use in the predictor step of the algorithm. In 
this step, Z and (OZ/6T)I,,, are estimated at the temperature Tj = To +¢~T 
by means of Taylor 's series expansions truncated after the second tem- 
perature derivative of Z. The calculation is then repeated at T~ to obtain 
(6"-Z/OT2)p, at that temperature and, hence, the mean value of the second 
temperature derivative on the interval [ To, Tt ]. The corrector step of the 
algorithm is then employed in which improved values of Z and (OZ/OT)~,,, 
at T~ are obtained; in this step, the truncated Taylor's series are again used 
but now with the mean value of (OZZ/OT2)p,, on the interval [To, Tt]  in 
place of the value at T,j. This has the effect of reducing the truncation error 
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of the method and permits the use of larger temperature increments. The 
procedure then restarts at T~ and continues until the upper experimental 
temperature is reached. 

This method may be applied even when u, T, and p are the experi- 
mental quantities because, whenever it is necessary to employ a value of u, 
Z has already been determined at that point and the pressure corresponding 
to the specified temperature and density may be evaluated. Typically, 
measurements might be made along a set of isotherms with the greatest 
pressure on each chosen to lie approximately on a specified isochore. 
An interpolation method is required in practice to obtain u at the larger 
number of grid points used in the calculation fi-om the, presumably, much 
smaller set of experimental results. 

The method has been tested numerically using simulated results for 
argon obtained from the equation of state of Stewart and Jacobsen [ 3 ]. The 
tests were carried out in the reduced temperature range 1.0 ~< T/T~<~ 5.0, 
where T ~ is the critical temperature, and at densities up to one-half of the 
critical. With 30 evenly spaced densities and temperatures steps of order 
T~/IO ~, the method was found to be stable and efficient with a numerical 
accuracy of order _+ 10 ~ in Z and _+ 10 4 in Cv.n,/R. Higher numerical 
accuracy may be obtained with a finer grid. 

3.2. Application to Subcritical Conditions 

The methods described above may be applied without modification to 
gases at subcritical temperatures as long as a positive temperature incre- 
ment ¢~T is used. However, we have devised a more useful procedure, in 
which a negative temperature increment is used but neither isobars nor 
isochores are followed. Instead, the path of the integration is chosen to be 
parallel with the saturation curve so that, when (T, p) are the independent 
variables, one uses a set of pressures which are each specified fractions of 
the vapor pressure. With (T, p,,) as the independent variables, densities 
which are specified fractions of the saturated vapor density may be used. In 
either case, the path of the integration is such that all of the isentropes pass 
through the isotherm at the highest temperature. We have tested this 
method also with simulated results for argon in the reduced temperature 
range 0.7 ~< T/T~<~ 1.0 and with densities up to half of the critical. The 
initial conditions were specified on the critical isotherm and the accuracy 
and stability of the method was the same as that described above. 

4. P R O P A G A T I O N  OF ERRORS 

Errors in the thermodynamic properties obtained from the speed of 
sound will arise from errors in both u itself and the initial conditions. We 
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shall take (T,p,,) as the independent variables for the purposes of this 
discussion and denote the "true" solution of Eqs. (5) and (6) by Z. .  If the 
equations are solved, with values of the speed of sound and initial condi- 
tions each burdened by small errors, then an erroneous solution for Z will 
be obtained which we denote by Z o + Z , .  where ZI may be termed a 
parasitic function. We suppose that initial conditions are specified at 
T =  To as follows: 

and 

Z = Zo + eo(p,,) (7) 

To(OZ/c3T),, = To(c3Zo/C3T),,,.+ t:l(p,,) (8) 

where eo and el are functions which represent the experimental errors. We 
further suppose that the experimental values of u 2 are burdened by some 
small fractional error,~, which is a smooth function of temperature and 
density. When the errors are small (eo, e~, ~ each ,~1), Z~ will also be 
small compared with Zo and we may linearize Eqs. (5) and (6) to obtain 
the equation obeyed by Zz in that regime: 

( Mu2/RT)~ =- { Z, + p,,( OZ,/~P,,)T} + 2a{ Zo + T(OZ,,/c3T ),,,,} 

x {Z, + T(c~Z,/T),,,,} + a2{Z,,+ r(c3Zo/OT),,,,}'- 
"Pn 

xJ {2TCOZ,/OT),,,,+ T2(c~2Z,/c3T2)p,,} P,7' dp,, (9) 
0 

Here a=R/C, - . , .  We next assume that ~ may be represented by the 
double-power series expansion 

a = Z t, ipii'l T/Tol ~' I101 
J 

in which i h and 0~ are exponents and the bj are constants. Exact analytic 
solution of Eq. (9) is possible only in the special case where Zo = I and 
hence ( M u 2 / R T ) = ( I + a ) .  It is also convenient to assume that a is 
constant, in which case the general solution is given by [4]  

Z, = ~ (bj/zj) p','/( T/To)" 
J 

+~[ckcos{~,'kln(T/To)} +dksin{)'kln(T/To)}](T/To)-/~*p',; '~ (11) 
k 

In Eq. (11), Zj is given by 

Zj= {n/(nj+ 1) + 2anj(l + 0~fl + a-'0~j(l + ~j)}/{(l + a )  nj} (12) 
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Ck and d k a r e  arbi t rary  constants ,  m k is an exponent ,  and fik and )'k are 
given by 

[ tk= ½{I +(2m~./a)} (13) 

" I )'~ - =  {( 1 + a ) / a  2 } m~. --  ~ ( 1 4 )  

The corresponding error  AC~.., in the isochoric molar  heat capaci ty is then 
given by 

AC,. .m/R = - ~  (h,&i}(p'/,'/ll i) ~j(aj + 1)(T/T,,) ~' 
i 

k 

x cos { )'~. In( T/To )} ( T/T~ ) -/j~ { p',','~/mk ) 

k 

x sin { )'k ln( TIT.  )} ( T/T .  ) -/j~ (p;',"/mk) ( 15 ) 

The first term in Eq. (11) is the part icular  solution corresponding to the 
assumed fractional error  in the speed of sound, while the second term is the 
solution of the corresponding homogeneous  equat ion [4] .  The part icular  
solution is completely  determined by 6, and the constants  ok, dk, and m~. 
should be adjusted to satisfy the initial condit ions at T =  To. This result 
indicates that the part icular  solution has exactly the same functional form 
as ~ itself. Fur thermore ,  since ZJ is generally of  order unity, errors in the 
speed of sound p ropaga te  into errors in Z of the same order. However ,  two 
special cases are worth mentioning. The first is when ~5 is constant ,  in which 
case the corresponding error  in Z vanishes (but there will be an error  in the 
derived heat capacity).  The second special case is when the function c~ con- 
tains a term with values of n~ and a / such  that  Zj vanishes; the effect of  such 
an error  in u 2 is catastrophic.  However ,  the equat ion Z~ = 0 has a real root  
only when nj = a2/{ 4( 1 + a)} and ~ = - ( 2 + 3a)/{ 4( 1 + a)} ; this value of nj 
always corresponds  to a term which is nonanalyt ic  in the limit p,,--* 0. For  
example,  with a m o n a t o m i c  gas n.,. is 1/15 {and x j =  - 3 / 5 ) .  Provided that  
the fractional error in the speed of sound may be represented by terms 
which are analytic functions of  the density, the conclusion that  Zt  is of  the 
same order  as 6 is strictly valid. With current  measurement  techniques, this 
source of error  may  be one order  of  magni tude smaller than typical uncer- 
tainties in direct ( p , p , ,  T)  measurements .  For  real gases, the precise 
p ropaga t ion  of errors from u z to Z will differ somewhat  from the ideal-gas 
solution but the same general conclusion applies. 
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We now turn to the effects of  errors in the initial conditions alone with 
~ = 0. Since at T =  T,, 

and 

Z I  ~ Ell ~ E ckP',', '~ 
k 

Tl,I ~ Z ,  /c'~ T),,,, = ,:, = ~ I ~',,/, - Ih  "~ I p ;7' 
k 

16) 

17) 

tile parameters ct.. dt., and m, are determined completely by the functions 
t:. and r. t. It follows from Eq. (14) that, provided m~.~>a2/4(l +~) .  ~'k and 
fit are both positive-real, and the k th  term in the series lbr the parasitic 
solution has the form of a damped oscillation which ultimately decays to 
zero along an isochore as T ~  .~. On the other hand. terms for fl~.<0 
diverge with increasing T and it is therefore essential to ensure that the 
series representations of  r. 0 and t:~ do not contain such terms. In practice 
this should be fairly easy as the functional form of Z is known to be that 
of  the virial series in the low-density limit. We note that along a path with 
p,, ~ T", the term (T/TI,) /~p',','~ ensures that Z~ ultimately decays for all 
m,  only if x < a t. The case x = a ~ corresponds to the isentropic path for 
the ideal-gas model with Cs..,, constant  and represents a limit of stability. 
This is exactly the result anticipated earlier. 

For  moderately dense real gases, the most  interesting errors terms are 
those proport ional  to positive integer powers of  p,,. Typical behavior is 
illustrated in Fig. 2 by the results for a polyatomic gas with a = ~. We show 
here the effects of errors in the initial values of  Z (with ~:~ = 0 )  and also the 
effects of  errors in the initial values of  T(OZ/OT)~,,, (with ~'l~ = 0). Terms with 
m, = 1, 2, and 3 are shown in both cases. The results are shown along an 
isochore on which either t : o = 2 x  10 - 4  o r  e I = 2 ×  10 3; these values were 
chosen to correspond to achievable experimental accuracies in Z and 
T(6Z/OT)p,. We see that the effects of  an initial error in Z decay rather 
rapidly, especially for larger values of  the exponent ink. For  the case of  
initial errors in T(OZ/OT)~,,,, the situation is slightly less satisfactory 
because the propagated errors at first grows before eventually decaying. 
However, in this example the greatest error does still not  exceed 2 x 10 4. 
We note that, in all cases, the propagated error decays more rapidly for 
smaller values of  a and that the accuracy required of  the initial values of  
T(OZ/OTb,,, is most demanding for the case o f a  monatomic  gas. The effects 
of both kinds of  error in the initial conditions on the values of  Cv.m 
obtained are greatest at the initial temperature and decay rapidly at higher 
temperatures. For  example, the terms with mk = I give rise to errors of  
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Fig. 2. Parasi t ic  con t r ibu t ion  Z~ to Z a long  an isochore for a gas  with 

a =  I/'3 resul t ing from errors  in the initial  condi t ions  p ropor t iona l  to PI','. 
( - - - ) Z , = 2 x 1 0  -4 at T . : (  - - - )  T(('~Z,/c~T),,=2x10 -3 at 7",,. 
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Fig. 3. Parasi t ic  con t r ibu t ion  Z~ to Z a long a line at a cons tan t  hac t ion  of 
the sa tura t ion  densi ty for a gas  with a =  I/3 result ing from errors  in the 

init ial  condi t ions  p ropor t iona l  to p , .  ( - - )  Z~ = 2 × 10 -4 at T.;  ( . . . . .  ), 
T(OZj/OT),. = - 2  x 10 -3 at T.. 
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about  0 .2% at To but the propagated error is less than 0.1% at all 
temperatures above 1.1 To. 

It is of course possible numerically to generate a solution at tem- 
peratures below To but Eq. ( 11 ) shows that the parasitic errors will exhibit 
oscillatory behaviour with exponential growth as the temperature is 
reduced along an isochore. However,  over a short interval, useful results 
may be expected. When the solution is generated with a negative tem- 
perature increment but in a region bounded by an upper density equal to 
a specified fi'action of  the saturated vapour  density, the parasitic terms 
again decay. This is illustrated in Fig. 3 for the case of  a polyatomic gas 
with a = 1/3 and errors in the initial conditions proport ional  to p , .  

The analytic model used above is of  course based on the erroneous 
assumptions that Zo is unity and a is constant,  but as we shall see, the 
results are qualitatively correct. The analytic solution correctly predicts 
the damped oscillator), behavior of  Z~ at temperatures above To, that the 
effects of errors in the initial conditions proport ional  to p','," decay 
increasingly rapidly as the exponent mk increases, and that the effects 
of  errors in the initial conditions decay more rapidly for polyatomic 
gases [a~< 1/31 than they do for monatonfic  gases ( a = 2 / 3 ) .  By setting 

2.0 

"~ 1.0 

0.0 
150 225 300 

T,K 

Fig. 4. Parasitic contribution Z, to Z along isochores for argon gas result- 
ing from an error in the initial values of Z given by e,,=4 x lO-4(p,,/p~i), 
where p:; is the critical density. (a) p,=l):;/2; (b) p,,=p:;/4; and 
(c) p,,=p:i.'8. ( ). Numerical sohttion of Eq.(9) with properties from 
Ref. 3; ( . . . . .  ), Eq. (1[). 
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a = R /C7~ , , (To)  and neglecting variation of this quantity with temperature, 
one effectively overestimate slightly the propagation of errors for 
polyatomic gases at T >  To. 

The effects of approximating Z,. by unity have been tested by com- 
paring the analytic error model with the results of numerical solutions of 
Eq. (9). In Fig. 4 we show the results of calculations performed for argon 
gas along isochores at one-half, one-quarter, and one-eight of the critical 
density with the initial temperature close to T ~. For the numerical solution, 
all properties were calculated from the equation of state of Stewart and 
Jacobsen [ 3 ]. We see that the actual propagated error determined numeri- 
cally is generally rather greater that the analytic model predicts but that 
the differences are not too large and the agreement gets better, as expected, 
at lower densities. If we compare instead Z ~ / Z ,  then we find that the 
analytic model gives an upper bound of the relative error. 

5. C O N C L U S I O N S  

The results in this paper show that the compression factor of a gas 
may be obtained from the speed of sound with an accuracy controlled 
mainly be the accuracy of the initial conditions. The isochoric and isobaric 
heat capacities may be obtained also with outstanding accuracy. For the 
gas phase, initial conditions on an isotherm near to T ~ are sufficient to 
apply the method along isochores (or isobars) to higher temperatures and 
along paths parallel to the saturation curve at lower temperatures. For 
many polyatomic gases, values of Z along two closely spaced isotherms 
should be sufficient to determine the initial conditions but, for monatomic 
gases, several isotherms may be needed to determine T(~Z/~T) , , , ,  with suf- 
ficient accuracy for the results to equal or exceed the accuracy of direct 
measurements. 
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